Classify clouds in a model
Arguments
- mdata
Data of a model, as given by
summarizeHDBSCAN
.- mname
Name of a model; the name of
mdata
.- ttmx_dir
Directory where the token-level distance matrices are stored.
- suffix
Suffix of the file names for the token-level distance matrices; the function assumes that the name of the file is the name of the medoid plus the suffix.
- k
Number of nearest neighbors for
clusterDistance
andclusterSeparation
.
Value
A table with one row per cluster in the model, the columns created by
clusterSeparation
, clusterHDBSCAN
and
clusterDistance
and the classification of each cluster based
on the Nephological Shapes from Montes (2021)
(see Chapter 5for a full description and examples).
References
Montes M (2021). Cloudspotting: Visual Analytics for Distributional Semantics. Ph.D. thesis, KU Leuven, Leuven.
Examples
if (FALSE) {
purrr::imap_dfr(models$medoidCoords, classifyModel, ttmx_dir = 'path/to/dir')
}