Classify clouds in a model
Arguments
- mdata
Data of a model, as given by
summarizeHDBSCAN.- mname
Name of a model; the name of
mdata.- ttmx_dir
Directory where the token-level distance matrices are stored.
- suffix
Suffix of the file names for the token-level distance matrices; the function assumes that the name of the file is the name of the medoid plus the suffix.
- k
Number of nearest neighbors for
clusterDistanceandclusterSeparation.
Value
A table with one row per cluster in the model, the columns created by
clusterSeparation, clusterHDBSCAN and
clusterDistance and the classification of each cluster based
on the Nephological Shapes from Montes (2021)
(see Chapter 5for a full description and examples).
References
Montes M (2021). Cloudspotting: Visual Analytics for Distributional Semantics. Ph.D. thesis, KU Leuven, Leuven.
Examples
if (FALSE) {
purrr::imap_dfr(models$medoidCoords, classifyModel, ttmx_dir = 'path/to/dir')
}
